Escuela Técnica Obrero Argentino

Docentes:

Correa Claudia

Rolando Rodríguez

SEXTO AÑO

1° Y 2° División

EDUCACION SECUNDARIA TÉCNICA Y FORMACIÓN PROFESIONAL

TURNO: MAÑANA Y TARDE

AREA CURRICULAR: MATEMÁTICA

TÍTULO: LIMITE DE UNA FUNCIÓN

CONTENIDO SELECCIONADO: Límite de una Función

DESARROLLO:

Noción de Límite

Dada una función f: R→R estudiaremos el comportamiento de la función en un entorno del punto a

Ejemplo 1:

F: $R \rightarrow R$ dada por f(x)=2x -3 y a=4

 $E^*[4;0,5] = (3,5;4,5)-\{4\}$

Como al considerar el entorno (3,5; 4,5)- {4} queda excluido el punto a=4, no interesa la función en dicho punto, sino el comportamiento de la función en ese punto. Debemos analizar la tendencia de los valores de la función cuando se aproxima

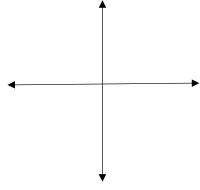
Por izquierda a 4 x→4⁻

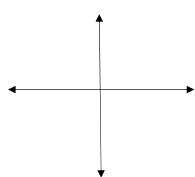
Por derecha a 4 x→4⁺

Observando los valores tienden a 5

Х	y = 2x - 3
3,8	
3,9	
3,98	
3,999	

x	y = 2x - 3
4,1	
4,05	
4,01	
4,001	





Observación:

a) De la tabla 1 podemos decir que: El límite de **f(x)** cuando x tiende a 4 por izquierda es igual a 5.

En símbolos:

$$Lim \qquad (2.x - 3) = 5$$

$$x \longrightarrow 4^{-}$$

b) De la tabla 2 podemos decir que: El límite de **f(x)** cuando x tiende a 4 por derecha es igual a 5.

En símbolos:

Lim
$$(2.x - 3) = 5$$

 $x \rightarrow 4^+$

De la observación de **a** y **b** podemos deducir que:

Lim
$$(2.x-3) = Lim (2.x-3) = 5$$

 $x \longrightarrow 4^ x \longrightarrow 4^+$

Entonces podemos decir que existe el límite y es:

Lim
$$(2.x - 3) = 5$$

 $x \rightarrow 4$

Nota: Siempre que:
$$\lim_{x \to a^{-}} f(x) = L_{1}$$

$$\downarrow_{1} = L_{2} \text{ entonces existe L tal que L} = L_{1} = L_{2}$$

$$\lim_{x \to a^{+}} f(x) = L_{2}$$

En general:

f(x) tiende a un límite finito L (L ϵ R) cuando x tiende a a (a ϵ R), si a cada entorno de L de radio ϵ corresponde un entorno reducido de a, tal que f(x) está definida en todo punto de él y se verifica que a todo punto x del entorno reducido a, corresponde un punto y = f(x) del entorno L.

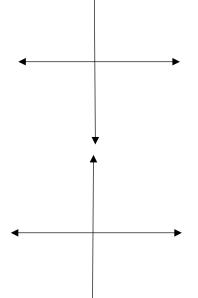
Es decir: Lim f(x) = L si para todo $E(L, \varepsilon) \exists E^*(a, \delta) \subset Dom f tal que si <math>x \varepsilon E^*(a, \delta) \to f(x) \varepsilon E(L, \varepsilon)$

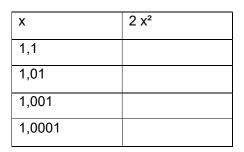
Ejemplo 2

Sea f: R
$$\rightarrow$$
 R tal que g (x) = 2 x^2 y a= 1

(estudiaremos el comportamiento de la función g(x) en un entorno reducido de a = 1)

Х	2 X ²
0,9	
0,99	
0,999	
0,9999	





Observando los valores de la función tienden a 2 cuando x se acerca a 1 por izquierda y por derecha. Es decir:

lim
$$2 x^2 = 2$$
 y lim $2 x^2 = 2$

Luego:

Lim
$$2 x^2 = 2$$

Ejercitación:

I) Representa gráficamente:

- a) $f(x) = x^3$
- b) $g(x) = x^2$

c)
$$t(x) = \begin{cases} x^2 & \text{si } x \ge 1 \\ 2 & \text{si } x < 1 \end{cases}$$

d)
$$h(x) = \begin{cases} x & \text{si } x \ge 2 \\ 1 & \text{si } x < 2 \end{cases}$$

II) Determinar si existen los siguientes límites:

a) 1- $\lim_{x \to \infty} f(x) = \dots$ lim $f(x) = \dots$ entonces: $\lim_{x \to \infty} f(x) = \dots$

$$x \rightarrow 2^- \qquad x \rightarrow 2^+ \qquad x \rightarrow 2$$

2- $\lim f(x) = \dots \lim f(x) = \dots$ entonces: $\lim f(x) = \dots$

$$x \rightarrow 0^ x \rightarrow 0^+$$
 $x \rightarrow 0$

3- $\lim f(x) = \dots \lim f(x) = \dots$ entonces: $\lim f(x) = \dots$

$$x \rightarrow -1^ x \rightarrow -1^+$$
 $x \rightarrow -1$

b) $\lim g(x) = \dots \lim g(x) = \dots$ entonces: $\lim g(x) = \dots$

$$x \rightarrow 0$$
 $x \rightarrow 0^+$ $x \rightarrow 0$

c) 1) $\lim_{x \to \infty} t(x) = \dots$ $\lim_{x \to \infty} t(x) = \dots$ entonces: $\lim_{x \to \infty} t(x) = \dots$

$$x \rightarrow 1^- \qquad x \rightarrow 1^+ \qquad x \rightarrow 1$$

2) $\lim t(x) = \dots$ $\lim t(x) = \dots$ entonces: $\lim t(x) = \dots$

$$x \rightarrow 0^ x \rightarrow 0^+$$
 $x \rightarrow 0$

d) $\lim h(x) = \dots \lim h(x) = \dots \text{ entonces: } \lim h(x) = \dots .$

$$x \rightarrow 2^- \qquad x \rightarrow 2^+ \qquad x \rightarrow 2$$