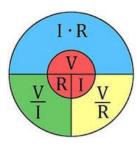
Establecimiento: C.E.N.S Ing. Domingo Krause

Docente: Gabriela Cornejo

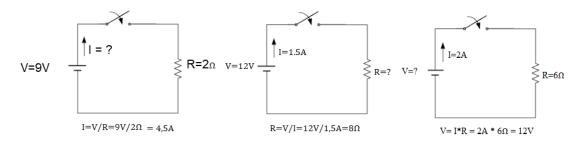
Curso: 3º 2º


Turno: Noche

Formación Teórico Práctica

En la presente guía se hará un repaso de análisis de circuitos y las leyes de la electricidad.

GuíaNº1: ANALISIS DE CIRCUITOS


Ley de ohm:

La ley de ohm dice que la intensidad de corriente que atraviesa un circuito es directamente proporcional al voltaje o tensión del mismo e inversamente proporcional a la resistencia que presenta. Siendo la intensidad de corriente medida en amper [A], la tensión medida en volt [V] y la resistencia medida en ohm[Ω].

Estas relaciones pueden determinar en un circuito la cantidad desconocida de una de las tres variables eléctricas si se conocen las dos restantes.

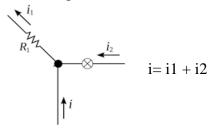
Ejemplos

Potencia de un circuito

P= V*I, si aplicamos la ley de ohm podemos obtener las siguientes expresiones para la potencia.

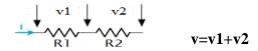
- Si reemplazamos V por su expresión $V=I*R \longrightarrow P=I*R*I=I^2*R$
- Si reemplazamos I por su expresión I=V/R \longrightarrow $P=V*(V/R) = V^2/R$

Por lo tanto sabiendo dos de cualquiera de los parámetros que componen el circuito es posible encontrar la potencia del mismo.

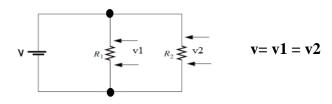

Leyes de kirchhoff

Ley de Intensidad de Kirchhoff

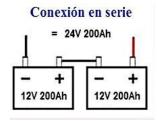
-Si el camino recorrido por la corriente es único

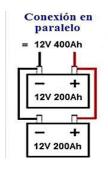


-Si en el camino recorrido por la corriente existe un nodo o bifurcación



Ley de tensiones de Kirchhoff


-Si los elementos conectados a un circuito están conectados uno a continuación de otro


-Si los elementos que componen el circuito están conectados a dos únicos puntos

Combinación de baterías o pilas

En una combinación serie de baterías o pilas la tensión total suministrada es la suma de cada una de ellas, mientras que la corriente es la misma que de una sola batería o pila.

En una combinación de baterías o pilas en paralelo la tensión suministrada a la carga el la misma que provee una sola batería o pila y la intensidad de corriente es la suma de cada una de las baterías o pila.

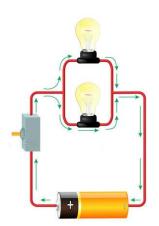
Circuito serie

Si todos los elementos que componen el circuito eléctrico están conectados uno al lado del otro, se dice que es una conexión serie

Resistencia en serie: es la suma de todas las resistencias individuales que componen la serie.

$$RT = R1 + R2 + + Rn$$

Corriente: como hay un solo camino, todas las resistencias son atravesadas por la misma corriente.


Tensión en serie: cuando la fuerza electromotriz hace mover los electrones a través de una resistencia la fuerza se desvanece provocando una perdida de tensión o "caída de tensión". Por lo tanto la suma de las caídas de tensión en cada una de las resistencias es igual a la tensión aplicada. VT = V1 + V2 + + Vn

NOTA: EN UN CIRCUITO SERIE LA RESISTENCIA TOTAL ES " MAYOR" QUE LA MAYOR RESISTENCIA QUE COMPONE EL CIRCUITO

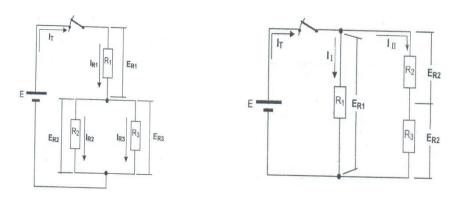
Circuito paralelo

Cuando se conectan elementos que componen un circuito eléctrico con sus extremos unidos se dice que están conectados en paralelo.

Tensión en paralelo: En conexión paralelo con una fuente, todos los elementos que componen el circuito tienen aplicado el mismo valor de tensión

Corriente: la corriente se divide en los distintos caminos, pasando una parte de la corriente total por cada rama, dependiendo su valor de la resistencia que se encuentra en la misma.

IT=I1 +I2 +...+ In

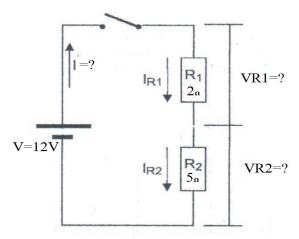

Resistencia en paralelo: el valor de resistencia en paralelo se calcula mediante la siguiente expresión:

$$\frac{1}{RT} = \frac{1}{R1} + \frac{1}{R2} + \dots + \frac{1}{Rn}$$

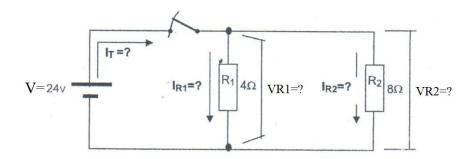
NOTA: EN UN CIRCUITO PARALELO LA RESISTENCIA TOTAL DEL CIRCUITO ES "MENOR" QUE LA MENOR RESITENCIA QUE COMPONE EL CIRCUITO.

Circuitos mixtos

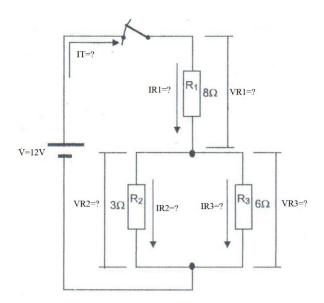
Tipos básicos de circuitos mixtos

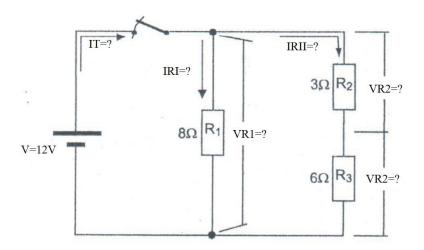

Resistencia en circuito mixto: para determinar la resistencia equivalente lo que se hace es descomponer el circuito completo en partes, consistente en circuito serie simple y circuito paralelo simple, resolver cada parte y luego combinarlas.

Corriente en circuito mixto: la intensidad de corriente de circuito mixto depende de la resistencia total ofrecida por el circuito cuando se lo conecta a una fuente de tensión. El flujo de corriente se dividirá por todos los caminos en paralelo, reuniéndose de nuevo para pasar por las partes serie.


Tensión en circuito mixto: la caída de tensión en circuitos mixtos se produce de la misma manera que en los circuitos serie y los circuitos paralelos. Estos se deben analizar en partes y luego combinarlas.

Actividades


Ejercicio1) Encuentre la intensidad total, y la caída de tensión en cada resistencia y la potencia total del circuito.


Ejercicio 2) Encuentre la intensidad de corriente total, la intensidad de corriente en cada rama, la tensión aplicada en cada resistencia y la potencia total del circuito.

Ejercicio 3) Encuentre la intensidad de corriente total, la intensidad de corriente en cada rama y las caídas de tensión en cada resistencia.

Ejercicio 4) encuentre la intensidad de corriente total, la intensidad de corriente en cada rama y la caída de tensión en cada una de las resistencias.

Bibliografía

Fundamentos de la electricidad – Milton Gussow

Director: Prof. Roberto Ramirez