# Escuela de fruticultura y Enología.

Docentes: Ing. Silvia Velázquez. Ing. Luis Carrera.

Área Curricular: Física II - 5to año - Orientación Agro y Alimentos.

Turno tarde

Título de la propuesta: Magnitudes básicas para aplicaciones en magnitudes compuestas de.

Contenidos: Magnitudes físicas simples y compuestas. SIMELA y SI de medidas. Interpretación de magnitudes y su escritura.

Ya vimos en la clase anterior, que las distancias se miden entre 2 puntos, en forma recta, y la unidad de medida es el "metro" (con sus múltiplos y submúltiplos).

## **Actividades**

Para recordar, haz lo siguiente:

- 1. Mide una de las distancias del ambiente donde estés, de pared a pared.
- 2. Mide el diámetro (el mayor posible) del vaso que uses al comer.
- 3. Mide el espesor de la regla o escuadra (el mayor posible) que uses.
- 4. Pegunta y escribe la distancia entre las ciudades de Mendoza y San Juan.

En todas las mediciones, coloca claramente si usas metros, mili metros, kilo metros, o centi metros. Explica por qué usas cada múltiplo o sub múltiplo en cada caso.

# **Superficies**

Ya han visto superficies en la escuela primaria, pero tratemos de tomar su significado, dejando atrás los cálculos que solemos hacer mecánicamente, a los que no le hallamos sentido.

Hay superficies Planas, con las que empezaremos, pero hay también superficies Curvas. Sea cual sea la superficie, para medirlas o calcularlas, usaremos una "unidad de medida de superficie".

Estas Unidades de medida de Superficies proceden de las unidades de medida vistas para medir longitudes. ¿Cómo es ésto? Bien, digamos simplemente que a las unidades de medida de longitudes le agregamos la palabra "cuadrado", y tenemos las unidades de medida de superficie. Es decir, habrán "metros cuadrados" [m²], "centímetros cuadrados" [cm²], "Kilómetros cuadrados" [Km2], etc.

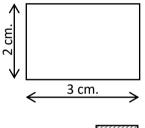
Ahora bien, ¿Qué son estos "cuadrados"?... Son eso justamente, al denominarlos "cuadrado" dos", tenemos respectivamente: Un cuadrado de 1m de lado, será 1 "metro cuadrado"

Un cuadrado de 1cm de lado, será 1 "centímetro cuadrado"

Un cuadrado de 1mm de lado, será 1 "milímetro cuadrado"

Un cuadrado de 1Km de lado (10 cuadras de ancho por 10 cuadras de largo), será 1 "Kilómetro cuadrado"

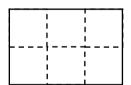
Estos cuadrados tienen ángulos rectos entre sus lados. En el espacio siguiente, con una regla, dibuja los cuadrados nombrados:


Explica por qué dos de los cuadrados no puedes dibujarlos.

Habiendo definido las unidades de medida de superficie, decimos que:

Medir una superficie es determinar la cantidad de unidades de superficie que caben en la superficie a determinar.

O sea, <u>la medida de una superficie es determinar cuántos cuadrados de unidad de</u> medida entran en esa superficie.


Por ejemplo; tengo el siguiente rectángulo:



Las medidas de los lados están en centímetros, por lo que la superficie sería en "centímetros cuadrados". Para determinar la superficie entonces, ¿Cuántos cuadraditos de 1cm² caben dentro de este rectángulo?

Veamos, 1cm<sup>2</sup> es: ¿Cuántos de éstos entran en el rectángulo?





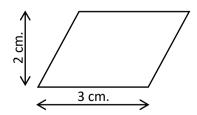
Para responder, dividimos el rectángulo cada 1cm en forma horizontal, y en forma vertical. Y vemos que son 6 cuadrados, 6 "centímetros cuadrados" de superficie, 6cm². Esta cantidad, para que recuerdes, se obtiene el multiplicar la Base por la Altura del rectángulo, es decir Superficie del rectángulo  $\boxed{Sup_{\square}=b.h=}$ ; en nuestro caso  $Sup_{\square}=2cm.3cm=6cm^2$ . Observe algunas cosas: Es indistinto multiplicar base por altura o altura por base (2 filas de 3 cm², o 3 columnas de 2 cm²), esto es característica de las multiplicaciones (propiedad conmutativa de las multiplicaciones). Fijate bien, 2 veces filas de 3cm², o 3 veces 2 columnas de 2cm². Además, observe que si la altura aumenta 1 cm, habrá toda una fila de centímetros cuadrados que se sumará, o sea  $Sup_{\square}=3cm.3cm=9cm^2=6cm^2(anteriores)+3cm^2(fila nueva)$ . Similarmente, si aumenta la base 1cm, habrá una columna más de cm² de superficie.

En el siguiente espacio, verifica dibujando, que la superficie pasa de 6cm² a 8 cm² o 9 cm² en cada caso:

Fíjese bien que al multiplicar, no solo se multiplican los números, también se multiplican las unidades, y cm.cm=cm². Todas las propiedades y resultados de matemáticas deben coincidir con lo observado. Siempre que obtenemos (midamos, calculemos, etc.), el valor de una superficie será en "cuadrados", (m², cm², km², etc.), por lo que no podemos "mezclar" medidas con diferentes unidades, o todo en cm, o todo en m, y así.

Toma el siguiente problema: mide las dimensiones del ambiente donde estés, y calcula la cantidad de metros cuadrados entran en el piso, es decir, calcula la superficie del piso del ambiente donde estés. Dibuja *a escala* el ambiente y la cantidad de metros cuadrados que tenga.

Ten presente que no siempre habrá una cantidad entera de metros cuadrados, o de cualquier unidad de medida de superficie; es decir, puede haber una fracción, o parte de algún "cuadrado" para completar la superficie exactamente.

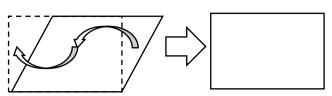

Calcula y dibuja en hoja aparte, para cada caso:

- 1. La superficie de un rectángulo de 3 cm de base y 5 cm de altura.
- 2. La superficie de un rectángulo de 2,3 cm de base y 4,5cm de alto.
- 3. Las superficie que resulta cuando el rectángulo del punto 1. aumenta 1cm exactamente su base.
- 4. Las superficie que resulta cuando el rectángulo del punto 1. disminuye 1cm exactamente su altura.
- 5. Las superficie que resulta cuando el rectángulo del punto 2. disminuye 1cm exactamente su base.
- 6. Las superficie que resulta cuando el rectángulo del punto 2. aumenta 1cm exactamente su altura.

## Superficies de paralelogramos.

Los paralelogramos son cuadriláteros como los rectángulos, pero no tienen ángulos rectos entre sus lados:

#### Por ejemplo:




Vemos que la base y la altura, sin embargo, se miden perpendicularmente entre ellas, independientemente del ángulo entre los lados.

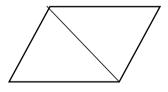
La superficie de un paralelogramo tiene la misma fórmula que la de un rectángulo,  $Sup \ U = b.h$  porque en realidad, la

cantidad de "cuadrados de unidades de medida de superficie" que entren en un paralelogramo es la misma que entran en un rectángulo con la misma base y altura:

Vemos que al de entre los lados de izquierda, la cambia, pero ahora



pasar el triángulo la derecha a la superficie no tenemos un


rectángulo con la misma base y altura del paralelogramo, y las mismas superficies. Por eso, las fórmulas de superficie son las mismas, a pesar de que parezca que al cambiar de figura geométrica, cambia la fórmula de cálculo.

Calcula y dibuja en hoja aparte, para cada caso pasa el triángulo de inclinación para lograr el rectángulo equivalente, y dibuja los cm² resultantes, numéralos y fijate si coincide con la cantidad calculada:

- La superficie de un paralelogramo de 3cm de base y 4cm de altura, con inclinación de 45°.
- 2. La superficie de un paralelogramo de 2cm de base y 4,5cm de alto, con cualquier inclinación (que se note).
- 3. Las superficie que resulta cuando el paralelogramo del punto 1. aumenta 1cm exactamente su base.
- 4. Las superficie que resulta cuando el paralelogramo del punto 1. disminuye 1cm exactamente su altura.
- 5. Las superficie que resulta cuando el paralelogramo del punto 2. aumenta 1cm exactamente su base.
- 6. Las superficie que resulta cuando el paralelogramo del punto 2. disminuye 1cm exactamente su altura.

## Superficies de Triángulos

Podemos tomar un triángulo como la mitad de un paralelogramo. Fijate:



Entonces, sea el triángulo que sea, con su base "b" y altura "h", el doble de su superficie será la superficie de un paralelogramo (con las mismas "b" y "h"), o bien, la superficie de un triángulo es la mitad de la superficie de un paralelogramo que lo contenga. Por

eso, la fórmula de la superficie de un triángulo es "dividido en 2":  $Sup \Delta = \frac{b \cdot h}{2}$ 

Se cumple para cualquier triángulo esto, y siempre la altura "h" perpendicular a la base "b".

**Actividad:** En hoja aparte, dibuja los siguientes triángulos, dibuja el paralelogramo del doble de superficie, y observa la cantidad de cm2 que tiene cada triangulo para corroborar el cálculo que hagas de cada una de sus superficies.

- 1. Un triángulo rectángulo de 3cm de base y 3cm de altura.
- 2. Un triángulo isósceles de 4cm de base y 3cm de altura.
- 3. Un triángulo equilátero de 4cm de base (Consulta libros o internet, o recuerda como construir este triángulo), y mide la altura para calcular y comparar con los cm² dibujados.
- 4. Un triángulo como el del punto 1., con 1cm mas de base (Fijate cuanto aumenta la superficie)
- 5. Un triángulo como el del punto 2., con 1cm menos de altura (Fijate cuanto disminuye la superficie)

## **Círculos:**

Es imposible hacer coincidir una cantidad entera de cuadrados con una medida de diámetro entera en los círculos.

Esto es debido al número  $\pi$  = 3,1415... (Tiene infinitos decimales).

Sin embargo, como en las otras figuras geométricas, podemos observar cuantos "cuadrados" caben en un círculo, dibujándolo, y observar si coincide o no con el cálculo de superficie.

La fórmula de la superficie de un círculo cualquiera es:  $Sup~O=\pi~.r^2$  donde  $\pi$  = 3,1415...; y "r"= radio del círculo.

Parece sencilla, pero suele complicarse porque confunden radio con diámetro, y olvidan que es "elevado al cuadrado" (longitud del radio multiplicado por si mismo, 2 veces)

Las superficies circulares son muy comunes en todos los cálculos técnicos que haremos, tanto en esta materia como en otras.

**Actividades**: En hoja aparte, dibuja los siguientes círculos, dibuja los cuadrados de 1 cm de lado que puedas dentro de la superficie circular, y observa la cantidad de cm2 que tiene cada círculo para corroborar el cálculo que hagas de cada una de sus superficies.

- 1. Un círculo de 2cm de diámetro.
- 2. Un círculo de 6cm de diámetro.
- 3. Un círculo como el del punto 1., con el doble de diámetro(Fijate cuanto aumenta la superficie)
- 4. Un círculo como el del punto 2., con la mitad del diámetro (Fíjate cuanto disminuye la superficie)

Verás que si el diámetro aumenta al doble, la superficie aumenta 4 veces (el cuadrado de 2), si el diámetro aumenta al triple, la superficie aumenta 9 veces (el cuadrado de 3)...

# Superficies curvas:

Al igual que las superficies planas, en una superficie curva podemos observar la cantidad de "cuadrados" que entren en esa superficie curva, y esa cantidad será el valor de esa superficie.

Muchas superficies curvas son "cilíndricas", se pueden "desenrollar", y observarlas y calcularlas como superficies planas, como la superficie lateral de un tanque cilíndrico, o la superficie de una manguera, que se pueden asemejar a paralelogramos.

La superficie de una esfera, no se puede "desenrollar" ... Pero podemos imaginar cuantos cuadrados entran en la superficie de una esfera. La superficie de una esfera es: Sup esfera =  $4.\pi r^2$ 

O sea, una esfera de radio "r" tiene tanta superficie como 4 círculos planos de ese mismo radio.

Actividades: Dada la dificultad de dibujar esferas en el papel, en hoja aparte, calcula las superficies de las siguientes esferas.

- 1. Una esfera de 2cm de diámetro.
- 2. Una esfera de 7cm de diámetro.
- 3. Una esfera de 1,5m de diámetro
- 4. Calcula la superficie del planeta tierra, sabiendo que el Ecuador tiene una longitud de 40000Km (El Ecuador es un círculo de 40000Km de perímetro.)

Director: Sergio Montero