C.E.N.S. Nº 74 "JUAN VUCETICH"

DOCENTES: ALEJANDRO TAPIA –GRACIELA SUAREZ

<u>AÑO</u>: 3°1° - 3°2°

AREA CURRICULAR: QUIMICA

TITULO: "APRENDIZAJE DESDE CASA"

CONTENIDOS

- ✓ Compuestos químicos inorgánicos.
- ✓ Óxidos básicos: Generalidades, formulación y nomenclatura.
- ✓ Ejercicios de aplicación de los contenidos.

OBJETIVOS

Comenzar con la introducción de los contenidosplanificados en la unidad nº1, la que se efectúa a través de la presentación de un marco teóricoacompañado de herramientas como enlaces hacia artículos y videos didácticos. Seincluye actividades consistentes en ejercitacionessencillas. De este modo se pretende continuar con los aprendizajes y el hábito de estudio, como así también dar cumplimiento a un requerimiento impuesto por el Ministerio.

CLASE 1

TEMA: COMPUESTOS QUÍMICOS INORGANICOS -OXIDOS BASICOS:

1-GENERALIDADES

Un **óxido básico u óxido metálico** es un compuestoinorgánico binario (formado por átomos de solo dos elementos) que resulta de la **combinación de un metal con el oxígeno.**

"METAL + OXIGENO

OXIDO BASICO"

PROPIEDADES

- -La unión se realiza a través de un enlace iónico.
- -Casi siempre forman compuestos cristalinos.
- -Al reaccionar con el agua forman bases o hidróxidos.
- -Presentan elevado punto de fusión y de ebullición
- -Muchos son insolubles en agua pero solubles en un medio acido.
- -Son de alta densidad.

USOS

- El óxido de magnesio se utiliza en la fabricación de materiales refractarios, abonos yen medicamentos contra la acidez estomacal.
- El **óxido de cinc** se emplea para la fabricación de pinturas y colorantes. En la preparación de pomadas antisépticas y cosméticos.
- El **óxido de aluminio** se emplea para trabajar metales y aleaciones de gran dureza.
- El óxido de plomo se usa en la fabricación de vidrio y en la fabricación de sales deplomo y colorantes diversos.

Otros óxidos básicos (colorantes inorgánicos)como el **óxido de hierro** y el **dióxido de titanio**, son utilizados en la millonaria industria de la cosmetología.

Estos colorantes tienden a ser de colores "tierra" y son empleados en la fabricación de maquillajes y correctores proporcionándoles el de tan de moda tono "mate".

En el artículo "La verdad detrás del color" encontrará información sobre los colorantes y la industria cosmetológica link: https://medium.com/cosmetica-saludable/la-verdad-detr%C3%A1s-del-color-1043ada9e640

Otro óxido de uso muy frecuente y conocido es el **óxido de calcio** o cal vivaque se obtiene por la calcinación , a unos 900°C, de las rocas calizas o dolomías.

La cal se ha usado desde laantigüedad en laconstrucción y como pintura de muros y fachadas. También en la siderurgia como fundente; para la producción de jabón; en la industria del papel, en cosmética y como fertilizanteentre numeroso usos más.

Consulteeste link para conocermás de este

Óxido.https://es.wikipedia.org/wiki/%C3%93xido de calcio

La provincia de San Juan es un importante productor de cal concentrando su actividad en las caleras ubicadas en los departamentos de Sarmiento, Albardón, Zonda y Jachal Esta actividad minera constituyeun importante ingreso económico para la provincia. Consultemás sobre este tema en el siguiente linkhttps://sisanjuan.gob.ar/mineria/2017-09-24/5649-conoce-el-proceso-de-produccion-de-cal

ACTIVIDAD 1

- 1- Responder el cuaderno o en la guía, las siguientes preguntas relacionadas con la información arriba consignada.
- a-¿Qué otro nombre reciben los óxidos básicos?....
- b-¿Con que tipo de elementos se combina el oxígeno para formar un oxido básico?......c-Un oxido básico en estado sólido ¿puede cambiar a estadolíquido a un temperatura
- ambiente de 30°C?Justifique la respuesta.....
- d- Observe en la etiqueta de los envase de productos de limpieza, higiene personal, talco, maquillajes etc. si figura algún oxido como ingrediente de su composición.
- Luego menciona el nombre del óxido y el producto en el que estápresente (De dos ejemplos)
- e- En cual localidades de Sarmiento se concentra la mayor cantidad de caleras?.....

2-CONCEPTO Y FORMULACION

CONCEPTO

Como ya se mencionó, los óxidosbásicos son compuestos formados por la combinación del oxígeno con un elemento químico metálico.

El **oxígeno** actúa con su **número de oxidación (-2)**, mientras que el**elementometálico** actúa con un **número de oxidación positivo**.

La fórmulaquímica de un oxido básico se obtiene al intercambiar las valencias o números de oxidación de dichos elementos.

 $M^{X}O^{-2} \longrightarrow M_{2}O_{X}$ Donde: M_{2} es cualquier elemento químico metálico

X, es la valencia o número de oxidación del elemento metálico

Ejemplos:(Si la valencia es 1 no se escribe)

✓ Fe₂O₃ Oxido con Hierro de valencia 3 , Na₂O Oxido de sodio de valencia 1

FORMULACION DE UN OXIDO BASICO

En primer lugar se busca cualquier elementometálico, por ejemplo el hierro (Fe).

Una vez que se escoge **el elemento, este se escribe junto al oxígeno** FeO. Luego se **asigna las valencias o números de oxidación** a los elementos, para el oxígeno es -2 y para el hierro puede ser +2 y +3. Se usa en este caso el +3 quedando de esta forma

 Fe^{+3} O⁻², luego se**intercambian las valencias** (estado o número de oxidación) asignando la del oxígeno al hierro y la del hierro al oxigeno pero **en forma de subíndices y sin su signo**, quedando de la siguiente forma Fe_2O_3 .

$$Fe_2^{+3}O_3$$
 Fe₂O₃

Si usamos la valencia +2 para el hierro la fórmula quedaría así: Fe_2O_2 la cual se puede simplificar(los 2 se simplifican entre sicancelándose)quedando: FeO.

Formulación

Se escribe a la izquierda el metal (M) que es el más electropositivo y a la derecha el oxígeno (O) y después se intercambian los números de oxidación. La valencia del grupo oxígeno (-2) se le pone al metal como subíndice y el número de oxidación del catión metálico (+m) al oxígeno.

Los **números de oxidación**, también llamados valencias o estados oxidación, son números enteros que representan el **número de electrones** que un átomo pone en juego cuando se unen para formar un compuesto. Se escribe: +1.+2.+3.+4. -1.-2.-3 etc. El número es positivo si el átomo pierde electrones o los un átomo que tenga comparte con tendencia a captarlo y es negativo cuando el átomo gana electrones. Estenúmero, y para cada elemento, se informa en la Tabla periódica de los Elementos

Si se considera la reacción química, el metal se enlaza con el oxígeno de tal manera que elnúmero o estado de oxidación del oxígeno será **-2**(O⁻²) y del metal **+X**(M^{+x}) La ecuaciónquímica será:

Ejemplo:

$$Fe^{+3} + O^{-2} \longrightarrow Fe_2O_3$$
Ejemplos:

$$N^{+X} + O^2 \longrightarrow M_2O_X$$
Ejemplos:

$$Ni_2O_3 \qquad Cu_2O \qquad Na_2O$$
SnO PbO₂ ZnO

Si quiere aclarar lo expuesto puedes ver el video de YouTube "Como formular óxidos - IUPAC 2005" link: https://www.youtube.com/watch?v=p omcpaBAO4

ACTIVIDAD 2

a- Resuma en tres pasos la técnica para lo obtención de la fórmula de u oxido básico.
1º paso
2º paso
3ºpaso
b-Busque en su tabla periódica el número de oxidación de los siguientes elementos
complete la tabla.

NOMBRE DEL ELEMENTO	SIMBOLO QUIMICO	NUMERO DE OXIDACION
Cobre		
	Ca	
	Pb	
Magnesio		
	Li	
Aluminio		
	Au	
	K	
Mercurio		
	Cr	
Hierro		

Una vez que haya terminado esta actividad puede revisarla consultando el siguiente link "TP_valencias" https://es.slideshare.net/iguia/tp-valencias-37153089

c-Complete la tabla con la fórmula del óxido básico que se forma con lossiguientes elementos metálicos con el número de oxidación o valencia que se indica(si no figura este número para algunos elementos, complételo). Recuerde que el oxígeno es -2

ELEMENTO	N° DE OXIDACION	FORMULA DEL OXIDO
Ejemplo :Litio	+1	Li ₂ O
a- oro	+3	
b-zinc		
c-plomo	+4	
d-cobre	+2	
e-potasio		
f-níquel	+3	
g-magnesio		

d- Alguna de las fórmulas que figuran en la tabla son incorrectas. Identifique con "*I*" las incorrectas y con"*C*" las correctas y cuando sean incorrectas escríbala correctamente.

FORMULA QUIMCA	¿CORRECTA O INCORRECTA?	FORMULA CORRECTA
NaO ₂		
Al ₃ O ₂		
CaO		
Ag ₁ O ₂		
BeO		
Zn ₂ O ₂		

CLASE 2

TEMA: NOMENCLATURA

Las **nomenclaturas** (**nombres**), para los óxidosbásicos y demás compuestos, más utilizadas son la **estequiométrica o sistemática** y la de **Stock**, aunque también existe la **tradicional** pero está en desuso.

a- Nomenclatura estequiométrica o sistemática:

Se nombra intercambiando los términos de la fórmula (1º el oxígeno y 2º el elemento). Para el **oxígeno** se utiliza el término *óxido precedido del prefijo numérico* que le correspondesegúnla cantidad de átomos de oxigeno que hay en la formula, y para el elemento su nombreprecedidopor el prefijo numérico que le corresponde. Ambos términos unidos por la partícula "de".

Prefijo	Numero de átomos
Mono-	1
Di- o Bi-	2
Tri-	3
Tetra-	4
Penta-	5
Неха-	6
Hepta-	7
Octa-	8

Ejemplos:			
Fe ₂ O ₃	Trióxido de dihierro.		
FeO	Monóxido de hierro		
Li ₂ O	Monóxido de dilitio		

b-Nomenclatura de Stock:

Para el **oxígeno** se utiliza el término **óxido sin prefijo**, después se sitúa la **partícula "de"** a la que sigue el **nombre del elemento con suvalencia ennúmeros romanos**. Si el elemento no tiene más

que una sola valencia, no es necesario escribir el número

c- Nomenclatura Tradicional:

Ejemplos:

- √ Fe₂O₃ Óxido de hierro (III)
- ✓ FeO Óxido de hierro (II)
- √ Na₂O Oxido de sodio

En esta forma de nomenclatura se consideramos *sufijos y prefijos* que dependen de lavalencias que tenga el elementometálico con el que se forma el óxido.

CASO	VALENCIA	NOMBRE GENERICO	PREFIJO	ELEMENTO	SUFIJO
1 valencia	única	o	de	elemento	-
2 valencia	menor	x	-	elemento	oso
2 valencia	mayor	ı	-	elemento	ico
3 valencia	menor	D	hipo	elemento	oso
3 valencias	intermedio	o	-	elemento	oso
3 valencias	mayor		-	elemento	ico

Existen algunos elementos que cambian su nombre por su raíz griega o latina. Ellos son:

Elemento	Raíz
cobre	Cupr-
oro	Aur-
hierro	Ferr-
plomo	Plumb-
azufre	Sulfur-

Si es un **oxido básico**, y considerando su valencia, se usa la palabra **Óxido** seguido del prefijo**hipo**, luego el **nombre del elemento o de su raíz** y terminar con el sufijo**oso o ico**.

*Cromo Cr, cuyo nombre no tiene raíz, y que tiene **3 valencias** será:

-CrO Óxido *hipo*crom*oso*valencia +2

-Cr₂O₃ Óxido crom**oso**valencia +3

-CrO₃ Óxido cróm*ico*valencia +6

*Hierro Fe, que tiene 2 valencias, en el **nombre del elemento** usaremos su **raíz** y a continuación la terminación **"oso" o" ico"**FeO Oxido ferr**oso**valencia +2

Fe ₂ O₃. Oxido férri**co**valencia +3

ACTIVIDAD1

a- Complete la siguiente tabla con la fórmula del óxido y su nombre

FORMULA	NOMENCLATURA			
	SISTEMICA	STOCK	TRADICIONAL	
Li ₂ O				
		Oxido de cobre I		
	Monóxido de dipotasio			
	Trióxido de di aluminio			
			Oxido mercurioso	
		Oxido de oro III		
PbO ₂				
			Oxido ferroso	

b-Transcriba las fórmulas de los óxidos que obtuvo en la **actividad 2 punto c de la clase 1** y complete con el nombre delosóxido según la nomenclatura de stock y tradicional.

DIRECTIVO A CARGO: ING. GUSTAVO LUCERO