TRABAJO INTEGRADOR

Escuela: C.E.N.S. N° 69 Guía Integradora

Docentes: Vila Mario R.

Año: 2° División 2°

Turno: Noche

Area curricular: FÍSICA

Título: TRABAJO INTEGRADOR DEL ESPACIO CURRICULAR.

Contenidos:

- Longitud y Tiempo.
- Movimiento Rectilíneo Uniforme.
- Movimiento Rectilíneo Uniformemente Variado.
- Caída Libre y Tiro Vertical.
- Dinámica.
- Trabajo Mecánico Potencia.
- Energía.
- Manejo de Unidades.
- Resolución de Problemas de Aplicación.

Evaluación: Realización y Presentación de este trabajo en el plazo establecido.

CONTENIDO SELECCIONADO

Para la realización de este trabajo integrador, el alumno deberá revisar todas las guías que se dieron durante el año.

En el ítem de actividades, se han seleccionado preguntas y situaciones problemáticas referidas a cada uno de los temas desarrollados en las guías, tratando de respetar el orden en que fueron dadas.

ACTIVIDAES

CUESTIONARIO PARA EXAMEN INTEGRADOR DE FÍSICA

ESPACIO Y TIEMPO

- 1° Dar 5 ejemplos de longitudes de la vida real.
- 2° Escribir las unidades de longitud más comunes que usamos en este curso de física y sus abreviaturas.
 - 3° Realizar las siguientes conversiones de unidades de longitud:

1) 100 m a cm =	11) 0,001 Dam a mm =
2) 2,5 dm a cm =	12) 350 m a km =
, .	,
3) 0,05 Dam a dm =	13) 7500 mm a m =
4) 10 km a m =	14) 10,5 dm a cm =
5) 20 Hm a cm =	15) 0,047 m a mm =
6) 0,009 km a mm =	16) 3300 cm a m =
7) 270 cm a dm =	17) 8000 mm a dm =
8) 350 mm a Dam =	18) 9280,01 m a km =
9) 4000,5 dm a km =	19) 470 m a km =
10) 0,20 m a cm =	20) 180 km a m =

- 4° Escribir las unidades de tiempo más usadas en este curso de física y sus correspondientes abreviaturas y equivalencias.
 - 5° Realizar las siguientes conversiones de unidades de tiempo:

1) 24 años a días =	11) 40 hs a min =
2) 15 años a hs =	12) 12 hs a días =
3) 7 días a hs =	13) 3600 seg a hs =
4) 80 días a hs =	14) 360 min a hs =
5) 3600 min a seg =	15) 250 min a hs =
6) 2 hs a seg =	16) 96 hs a días =
7) 36 días a hs =	17) 135 días a meses =
8) 4 hs a seg =	18) 18 meses a días =
9) 24 min a seg =	19) 36 meses a años =
10) 2000 seg a min =	20) 365 días a años =

MRU.

- 6° Definir Trayectoria.
- 7° Definir Rapidez.
- 8° Definir Velocidad.
- 9° Definir de MRU.

Problema 1 - Un vehículo recorre la distancia de 1200 km en un tiempo de 16hs. ¿Cuál fue su velocidad media? Suponer que se desplaza con MRU.

Problema 2 - ¿Qué distancia recorrió un vehículo que se detuvo luego de haber transitado durante 2hs a una velocidad constante de 90 km/h?

Problema 3 – Un móvil recorre una distancia de 50km en un tiempo de 2h. Calcular la velocidad de desplazamiento.

Problema 4 – Un objeto se mueve a una velocidad de 100 km/h. ¿Cuál será la distancia recorrida por este móvil al cabo de un tiempo de 4h?

Problema 5 – Se desea saber cuánto tiempo tardará un móvil en recorrer una distancia de 800km si se desplaza a una velocidad de 110 km/h.

MRUV.

- 10 Definir MRUV.
- 11 Definir aceleración.
- 12 Definir movimiento acelerado

13 Definir movimiento retardado.

Problema 6 - Un vehículo parte desde el reposo y luego de 120 seg alcanza una velocidad final de 10m/seg. ¿Cuál es la aceleración del móvil?

Problema 7 - Determinar qué distancia recorre un automóvil en un tiempo de 10seg, si su Vi es cero y su aceleración es de 20 m/seg².

Problema 8 -Si un automóvil parte del reposo y su aceleración es de 50 km/h², ¿cuál será la velocidad final Vf luego de 5h?

CAÍDA LIBRE Y TIRO VERRTICAL.

- 14 ¿Cuándo se dice que un objeto está en caída libre?
- 15 ¿Cuándo se dice que un objeto está en tiro vertical?
- 16 Definir Aceleración de la gravedad.

Problema 9 - Se deja caer un objeto y se quiere saber cuál será su velocidad Vf luego de 30seg.?

Problema 10 - Se quiere conocer cuánto tiempo tardará un objeto, que se mueve en caída libre, en alcanzar una velocidad de 10m/seg si su Vi es cero.

Problema 11 - Calcular cuánto tiempo tarda en alcanzar la altura máxima (Vf = 0), un objeto que parte desde la superficie terrestre con velocidad inicial Vi de 12m/seg.

Problema 12 - Se quiere saber cuál debe ser la Vi de un objeto para dirigirse desde la superficie terrestre en forma vertical hasta alcanzar la altura máxima (Vf=0) en un tiempo de 15 seg.

DINÁMICA.

- 17 Definir 1° Ley de Newton. "Principio de Inercia".
- 18 Definir 2° Ley de Newton. "Principio de masa".
- 19 Definir 3° Ley de Newton. "Principio de Acción y Reacción".
- 20 Escribir la relación entre masa, peso y aceleración de la gravedad.

Problema 13 - Calcular (en Newton) la fuerza necesaria para poner en movimiento una masa de 300kg y que adquiera una aceleración de 5m/seg2.

Problema 14 - ¿Cuál es la masa de un objeto que está en reposo, si al aplicarle una fuerza de 2000 N adquiere una aceleración de 50m/seg2?

Problema 15 - ¿Qué aceleración adquiere un objeto de 100kg de masa, si se le aplica una fuerza de 1000 N cuando está en reposo?

TRABAJO MECÁNICO Y POTENCIA.

- 21 Definir Trabajo Mecánico y escribir su fórmula.
- 22 Definir Potencia y escribir su ecuación.

Problema 16 - Calcular el trabajo realizado en J por una fuerza de 4000 N actuando sobre un cuerpo, si este se desplaza 30 m en la dirección y sentido de la fuerza.

Problema 17 - Calcular la potencia desarrollada por una máquina que realiza un trabajo de 1500J durante un tiempo de 40 segundos.

ENERGÍA.

- 23 Definir energía.
- 24 Definir energía cinética y escribir su fórmula de cálculo.
- 25 Definir energía potencial gravitatoria y escribir su fórmula de cálculo.
- 26 Definir energía potencial elástica y escribir su fórmula de cálculo.

Problema 18 - Calcula la <u>energía cinética</u> de un vehículo de 2000 kg de masa que circula a una velocidad de 20 km/h.

Problema 19 - Calcula la <u>energía potencial gravitatoria</u> de un saltador de trampolín si su masa es de 80 kg y está sobre un trampolín de 16 m de altura sobre la superficie del mar.

Problema 20 - Calcula la <u>energía potencial elástica</u> de un resorte que se ha estirado 0,3 m desde suposición inicial. La constante elástica del resorte es de 50 N/m.

<u>Profesor</u>: Vila Mario email: mariovila_escuela@yahoo.com

DISEÑO Y ELABORACIÓN DE LA GUÍA: VILA MARIO R. (2ºaño, 1º y 2ºdiv.).

<u>Directivo a cargo del establecimiento escolar</u>: Directorprof.Pirri Vicente.