MATEMÁTICA 6° AÑO EPET N°8

Escuela: EPET8

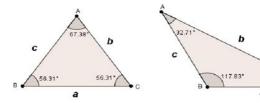
Guía Pedagógica Nivel Secundario

Area Curricular: MATEMÁTICA

Cursos: 6°1° Y 6°2°

Docentes: Mónica Narvaez, Anabelia Treu

TEMA:


TEOREMA DEL SENO Y TEOREMA DEL COSENO. RESOLUCIÓN DE TRIÁNGULOS OBLICUÁNGULOS.

Contenidos Seleccionados:

- Teorema del seno
- Teorema del coseno
- Sistemas de medición de ángulos.

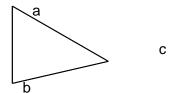
Ejemplos de:

TRIANGULOS OBLICUANGULOS

Actividad 1: Complete:

Un es oblicuáng	ulo cuando ninguno	de sus _	es recto y
resolverlo es hallar el valor de sus	s tres	y sus _	lados. Para
ello se debe aplicar el teorema de	ıly	/ el	del coseno. Además
se usa la propiedad de la	de los		interiores.

Los siguientes teoremas relacionan los lados de cualquier triángulo con sus ángulos interiores.


TOREMA DEL SENO: En todo triángulo sus lados son proporcionales a los senos de los ángulos opuestos. TEOREMA DEL	$\frac{ab}{\sin c} = \frac{ac}{\sin b} = \frac{bc}{\sin a}$	 Se deben conocer: Dos ángulos y un lado opuesto a uno de ellos. Ó Dos lados y un ángulo opuesto a uno de ellos. Se deben conocer:
COSENO: El cuadrado de un lado de un triángulo es igual a la suma de los cuadrados menos el doble del producto de dichos lados por el coseno del ángulo que forman.	bc^{2} $= ab^{2} + ac^{2} - 2.ab.ac.\cos a$ ac^{2} $= bc^{2} + ab^{2} - 2.bc.ab.\cos b$ ab^{2} $= bc^{2} + ac^{2} - 2.bc.ac.\cos c$	 Dos lados adyacentes y un lado. ó Tres lados.

(con ab, bc, y ac segmentos, lados del triángulo) y (a, b, c ángulos interiores del triángulo)

Actividad 2:

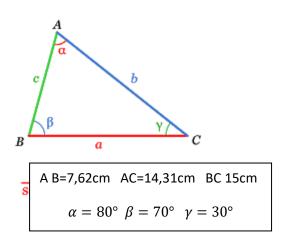
Desarrolle la fórmula del teorema de Pitágoras. Explique porque se considera al Teorema de Pitágoras como un caso particular del teorema del coseno.

Actividad 3: Dados los datos del triángulo. Indique con una cruz que teorema aplicaría :

A) Se conocen: los lados ab, ac y cb

TEOREMA DEL SENO___TEOREMA DEL COSENO___

B) Se conocen los ángulos a y b y el lado bc.


TEOREMA DEL SENO___TEOREMA DEL COSENO___

MATEMÁTICA 6° AÑO EPET N°8

C) Se conocen los lados bc, ac y el ángulo c
TEOREMA DEL SENO___TEOREMA DEL COSENO___

D) Se conocen los lados bc, ab y el ángulo c
TEOREMA DEL SENO TEOREMA DEL COSENO

Actividad 4: Escriba las relaciones que establecen el teorema seno y del coseno con los datos de la siguiente figura y verifique los resultados.

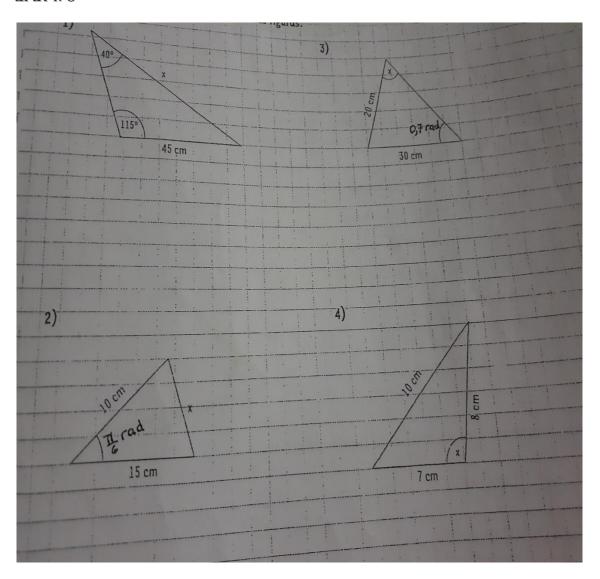
Actividad 5: Nosotros tenemos tres sistemas de medición angular: Sistema Sexagesimal, Radián y Centesimal. Los más usados son el Sistema Sexagesimal y el Sistema Radián. Podemos pasar de un sistema a otro utilizando la "Regla de tres simple" vista en los primeros años de secundaria.

Ejemplo: Conversión de Radianes a grados sexagesimal

$$\pi \operatorname{rad} \underline{\hspace{1cm}} 180^{\circ} \hspace{1cm} x = \frac{\frac{4}{3}\pi \operatorname{rad} \times 180^{\circ}}{\pi \operatorname{rad}} = 240^{\circ}$$

$$\frac{4}{3}\pi \operatorname{rad} \underline{\hspace{1cm}} x$$

Ángulo	Medida en el sistema sexagesimal	Medida en el sistema radial
Nulo	0 grado	0 radianes
Recto	90 grados	π / 2 radianes
Llano	180 grados	π radianes
Un giro completo	360 grados	2 π radianes
$\alpha \qquad \qquad \alpha^{\circ} = \frac{360}{2 \pi} \alpha_{r}$		$\alpha_{\rm r} = \frac{2 \pi}{360} \alpha^{\rm o}$


- A) Pasar de sistema radián a sexagesimal: 0,3 rad, $\frac{\pi}{4}$ rad y 1,5 rad. Usar calculadora científica y no considerar segundos(sólo grados y minutos).
- B) Pasar de sistema sexagesimal a radián: 45°, 120° y 270°.

Ejemplo:

$$180^{\circ}$$
_____x
 $X = \frac{50^{\circ} \times \pi \, rad}{180^{\circ}} = \frac{5}{18} \pi \, rad$

Actividad 6: Calcule en valor de x de cada una de las figuras.

MATEMÁTICA 6° AÑO EPET N°8

